
-O Software Engineering Institute

(0 WIntroduction to Software Design

N DTIC
Curriculum Module SEI-CM-2-2.1 : L. r. C T

0 [- , ,,, = , 91-00922
Ap ro e fr T. aL, i Ir-, , , _ 1 tl 1111 111!I!l !lIlI il l! Ifl
Ji I: -W,, ,,ion Unlimited

S 01

Introduction to Software Design

SEI Curriculum Module SEI-CM-2-2.1

January 1989

1 *.....

David Budgen..,
University -of Stirling ... , -- ,; c,

- Carnegie Mellon University

Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.

*Draft For Public Review

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN, Capt. USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FORA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Foreword

In 1986, David Budgen was one of the original SEI curriculum modulc authors.
He, with co-author Richard Sincovec, wrote the first version of this module
and, in so doing, helped define what a module should be. In the two years since
Professor Budgen completed his work, the module concept has evolved, and the
detailed modules on design originally envisaged to complement that early mod-
ule have not materialized. A workshop was convened at the SEI in the spring
of 1988 to revisit CM-2 and to devise a plan for better serving the needs of
software engineering educators for material on software design. 1 Workshop
participants concluded that the original module provided a good basis for a
more ambitious introduction and made numerous suggestions concerning the
content and organization of a successor. Fortunately, Professor Budgen was
able to return to the SEI in the summer of 1988 to make such a revision-really
a rewrite--of his module. To do this, the author drew upon his recent experi-
ence teaching design, reviewer comments, the recommendations from the de-
sign workshop, and the work and methods of other module authors. Although
minor revisions remain to be made, this new version of Introduction to Soft-
ware Design should provide a helpful, insightful commentary on an important
software engineering topic.

- Lionel E. Deimel
Senior Computer Scientist, SEi

. 1 Participants in the workshop were David Card (Computer Sciences Corp.), Raymonde Guindon kMCC), Everett Mernrtt (1I1M), Richird
Sincovec (University of Colorado). David Weiss (SPC). and, from the SEI, Mark Ardis, Lionel Deimel. David Glass. and John Nestor.

SEI-CM-2-2.1 Draft For Public Review

iv Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Acknowledgements Contents

The second version of this module has benefited from the Capsule Description 1
contributions of numerous people, including many who Philosophy I
assisted in the production of the first version. I would

particularly like to acknowledge the contributions of John Objectives 2
Nestor and Jan Pedersen, who helped resolve some of the Prerequisite Knowledge 3
major structural issues that surfaced in the revision proc- Module Content 4
ess, and the comments and ideas of Glenn Bruns and
Hassan Gomaa. Despite all these valiant efforts, there are, Outline 4
no doubt, some remaining errors or ambiguities, for which Annotated Outline 5
I must take sole responsibility. Glossary 17
The original version of this module was written with
Richard Sincovec, and we would like to thank Paul Jor- Teaching Considerations 20
gensen, Glenn Bruns, and David Weiss, all of whom made Suggested Schedules 20
major contributions. We also acknowledge the helpful Worked Examples 20
comments of Larry Peters, Michael Jackson. and Bob
Glass. Exercises 20

Bibliographies 23

Textbooks 23

Papers 29

SEI-CM-2-2.1 Draft For Public Review v

Introduction to Software Design

Module Revision History

Version 2.1 (January 1989) Editorial corrections by author
Version 2.0 (December 1988) Major revision of structure and content
Version 1.2 (July 1987) Format changes for title page and front matter; removed references to worked examples that are not yet

available; added acknowledgements
Version 1.1 (April 1987) Slight cosmetic changes
Version 1.0 (September 1986) Original version

vi Draft For Public Review SEI-CM-2-2.1

0

Introduction to Software Design

Capsule Description The module places strong emphasis upon providing

an understanding of design as a general problem-

This curriculum module provides an introduction to solving activity and upon how it differs from the

the principles and concepts relevant to the design of problem-solving techniques of more established dis-

large programs and systems. It examines the role ciplines. Within this context, it is possible to under-

and context of the design activity as a form of stand the role of design methods and the limitations
problem-solving process, describes how this is sup- inherent within them.
ported by current design methods, and considers the The design of software is essentially a creative oper-
strategies, strengths, limitations, and main domains ation, but the designer of a large system usually re-
of application of these methods. quires at least guidelines, and preferably a method,

to provide a structure for this task. The state of the
art is such that this module cannot advocate one de-
sign approach alone. Its emphasis, therefore, is on

Philosophy identifying principles. In order to illustrate these, a
number of methods have been selected as represen-

Design is an important activity for all except the tative examples of the different design strategies in
most trivial of systems. It exerts a major influence use and of the current best practice in software de-
upon the other phases of the development process, as sign. Since the module is an introduction to the
well as upon system maintenance. An understanding topic of design, the design methods chosen are only
of design issues and of the techniques available to described in outline, to a level considered sufficient
assist in producing a design is essential background to illustrate the principles involved. No attempt has
for the software engineer, been made to explain every nuance and special case

that might arise when using any particular method.
This module provides an introduction to the topic of

software design, including the following major ele- The module contains material needed for a basic un-
ments: derstanding of the design process (and therefore as a

prerequisite for any advanced study of design).
* An explanation of the re sof the design These topics might be taught in a software design

ativityteinproducinglargeansoftwae- course or as part of an introductory course on soft-
b d ste tthe r wiinciplesth an indtoac- ware engineering. Since an understanding of the is-
tienst the pricips ha aes usues and trade-offs that arise in system design re-
sess the quality of a design. quires an understanding of the structuring of soft-

* An introduction to a range of design ware systems, the material in this module should
representations, together with a descrip- also be considered as a necessary prerequisite to any
tion of their uses and limitations, study of system design.

" An explanation of the role of a design In writing this curriculum module, an effort has been
method in the production of a design and made to conform to the general framework for de-
of the design strategies used in software scribing software development processes and prod-
design methods. ucts introduced by H. Dieter Rombach in his curic-

* An introduction to several examples of ulum module Software Specification: A Framework
design methods and an assessment of [Rombach87. Professor Rombach's module is a
their strengths and limitations with useful prerequisite for understanding the terminolo-
respect to different classes of problems. gy used here. Figure 1 shows the relationships

SEI-CM-2-2.1 Draft For Public Review 1

Introduction to Software Design

among processes and products closely related to
software design, using the nomenclature of [Rom- D q
bach87. Figure 2 shows a simplified representation
of the design process, omitting the inevitable itera- (Input)
tive details. This process is concerned with how a
system can be built so as to behave in the manner Design
described by the D-requirements product. During Process
the design process, further documents are generated, Build Abstract
which in turn provide inputs both to the detailed de- Model
sign and to implementation tasks. The output of the I
design process is a design product, which is the in-
put to software implementation. ArchitecturalI

Refine Model

C(ustomer/User-Requirements Oriented) Require-
Analysis ments Process Detail Design

C-Req. Product--------

D(eveloper-oriented) Design Product
Specification Requirements

Process

D-Req roduct Describes what the Fkgure 2. Design process.
. otVem should do

Design Objectives

Describes how the The student who has worked through a complete se-
Design Product system should meet lection of material from this module is expected to:

the specification - Be able to explain the role of design in
the production of software systems and

Implementation understand the use of abstraction in the
design process.

* Be aware of the differences between de-
signing as an individual and as part of a

Code team, and of the need to record the proc-
ess of decision-making during design.

" Be familiar with the practices and repre-
Figure 1. Process-product relationships. sentation forms used in those design

methods that represent current best prac-
tice, and be able to explain the principles
behind each, their principal domains of
application, and their limitations (this
can be summarized as assessment of the
process).

2 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

" Be able to identify methods of assessing
the results of the design process in terms
of the quality of a design, the extent to
which it meets the original requirements,
and its likely performance, where appro-
priate (this can be summarized as assess-
ment of the product).

" Have been involved in a number of ex-
ercises that are intended to amplify and
illustrate the points made above.

The material of this module is not intended to be
sufficient to provide the student with a comprehen-
sive understanding of any particular design method.
Rather, he will be able to gain an understanding of
the domains of application that are best suited to
each method and an appreciation of the trade-offs
that occur during the design process. The student
should then be equipped to assist a more experienced
designer, as the next stage of his learning process,
and should have acquired the background that is
needed for reading some of the more specialized
texts on particular design methods.

*Prerequisite Knowledge

The student should already have acquired a fairly
thorough knowledge of the techniques of program-
ming-in-the-small and of the use of abstraction, al-
though this module is not directly concerned with
implementation. It is necessary for the student to
possess a degree of programming experience in or-
der to be able to understand the reasons behind some
of the design decisions that need to be made, even
where these are at a fairly abstract level. Fui ex-
ample, a student undertaking a course based upon
this module typically should have written and modi-
fied programs of at least 500 lines of source code
and should be familiar with such data structures as
stacks, linked lists, queues, and trees.

While this module is concerned with both sequential
and parallel-processing problems, the student need
only be familiar with the basic concepts of parallel
processing. That is, the student should understand
the concepts of synchronization and mutual exclu-
sion, although he need not be familiar with the usual
details of their implementation.

The material of the module requires no specific
knowledge of computer hardware, although the stu-

*dent is expected to have some basic knowledge of
conventional von Neumann architectures.

SEI-CM-2-2.1 Draft For Public Review 3

Introduction to Software Cesign

Module Content

.., glossary of important terms follows the annotated 2. Classification of Systems
outline. a. Batch systems

b. Reactive systems

c. Concurrent systems

Outline 3. Design Strategies
a. Top-down strategies

I. The Role of Software Design b. Design by composition, evolution of design
1. The Design Process methods

a. Definition of design c. Stylized design

b. Objectives of the design process 4. Design Representations

c. Design as a problem-solving process a. Data flow diagrams (DFD)

d. Design as a "wicked" problem b. HIPO diagrams

c. Design as a model-building process c. Structure charts

f. The role of a design method d. Decision tables

g. Constraints on the design process e. Entity structure diagrams (JSD)

h. Recording the process of design f. System specification diagrams (JSD)

i. Design by an individual vs. design by a g. Entity history diagrams
group h. Structure graphs

2. Design as a Step in System Development i. Finite state machines
a. Relationship of design to other activities j. Statecharts
b. Production models k. Petri nets
c. Economic factors 1. Pseudocode
d. Roles of prototyping m. Formal design languages

3. Principles of Design I. Design Practices: Design Methods
a. Abstraction 1. Structured Systems Analysis and Structured

b. Modularity Design

c. Information-hiding a. Problem decomposition (SSA)

d. Completeness b. Create a data dictionary

c. Design for maintenance c. Describe process logic

f. Design for reuse d. Deriving a structured design from the logical

g. Assessing a design model

h. Design verification e. An assessment of SSAISD

11. Design Practices: General Issues 2. Design by Modeling the Problem: JSP and JSD

1. Role of Design Methods a. JSP and JSD principles and the relationship
• between the two methods

a. Reasons for using a design method b esin proes

b. Management benefits arising from the use of

a method c. Handling multiple inputs in JSP-structure
clashes

c. Limitations of design methods d. Program inversion

d. General forms of systematic and formal

design methods e. An assessment of JSP
f. Extension of philosophy to JSD

4 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

g. Concept of entity-action-attribute I. The Design Process

h. Steps involved in JSD Design is a process carried on in many spheres of

i. An assessment of JSD human activity. It typically involves the designer in
3drawing upon his experience, together with a degree
3. Object-Oriented Design (OOD) of creative ability, in order to formulate and evaluate

a. The concept of objects a solution for a given problem. Here, we are con-

b. Abstraction, information-hiding, modularity cerned with the process of designing software sys-

and localization tems. The design process within other disciplines,
and particularly in other branches of engineering,

c. Steps involved in object-oriented design may usefully be compared and contrasted with the

d. Limitations/problems in applying design process conducted for software development.
object-oriented design A more general view of the design process in a

e. An assessment of OOD wider context is provided in [Jones70], and it is
4. Some Other Systematic Design Methods worth quoting his explanation of "why design isdifficult" at the outset:

a. Structured Analysis and Design Technique The fundamental problem is that designers are
(SADT) obliged to use current information to predict a

b. The Warnier-Orr approach future state that will not come about unless their
predictions are correct. The final outcome of

c. Stepwise Refinement with Verification designing has to be assumed before the means of
(Mills) achieving it can be explored. the designers have

d. SSADM to work backwards in time from an assumed
effect upon the world to the beginning of a chain

IV. Review of Design Practices of events that will bring the effect about.

1. Some Assessments of Design Methods These factors apply as much to software design as to
a. General assessment of methods any other form of design, and they are further aug-

mented by the fact that we are almost always con-
b. The use of software tools to support design cerned with the production of systems for new and

methods original applications of computers.

c. Selecting appropriate design approaches for
classes of problems a. Definition of design

2. Trends and Developments The purpose of design is to specify a solution to a
given problem. (Usually this problem is ex-a. Evolution of design methods pressed as a functional specification.) The de-

b. Trends in the development of design methods signer postulates a solution, models it, evaluates it
against the original requirements, and, after some
iteration of these operations, produces a detailed
specification of the solution for the programmer
to implement. (In this context, the functionalAnnotated Outline specification is regarded as being equivalent to
the "D-requirements" identified in [Rombach-

I. The Role of Software Design 87].)

The purpose of this first section is to identify the role b. Objectives of the design process
and objectives of the design process, the context within
which it takes place, and the products that should result The objective of the design process is to produce
from it. The material provided is intended to achieve a set of detailed specifications that describe the
this purpose, rather than to describe how design is ac- intended form of implementation for the software
tually performed. system. These specifications describe both the

form (structure) of the solution and the way that
We can also identify some of the constraints and the components are to fit together, and so act as a
limitations that apply to the design process generally, set of "blueprints" that show how the system is to
both in terms of the techniques currently available and be constructed.
of our ability to control and manage the process. This
information provides much of the background required c. Design as a problem-solving process
for understanding the form of the design process. Design can be regarded as a form of problem-

solving process that involves making extensive
use of abstraction, including separation of the
ior'-l aspects of the design from the physical

SEI-CM-2-2.1 Draft For Public Review 5

Introduction to Software Design

aspects of the design. Design involves making In practice, there will almost always be a set of
choices, often involving tradeoffs between the constraints restricting architectural and other
different qualities the designer is seeking to characteristics of the solution produced. Com-
achieve in his solution. The ultimate criterion pany design practices, standard hardware configu-
must be that of "fitness for purpose," in that the rations, existing file structures, real-time con-
solution should not only exhibit the best possible straints, implementation language features, and
structure, but must also do the required job as the need to anticipate future changes all restrict
well as possible. the solution space available to the designer. It is

important to appreciate that we rarely design any-
d. Design as a "wicked" problem thing in total isolation and that some requirements

A "wicked" problem has been described as a form for compatibility nearly always exist.
of problem where the solution to one of its as- h. Recording the process of design
pects may reveal an even more serious difficulty.
Software design can be considered an example of It is important to record the history of the evolu-
this type of problem. See [Peters8l] for an inter- tion of a design, particularly, the reasons for
esting discussion of this issue. making specific choices. This helps both with

design audits and with the maintenance task,
e. Design as a model-building process since the maintenance designer needs to know

The process of design involves the designer in why particular choices were made and why other

first building a highly abstract model of the cho- options were discarded. Unfortunately there is no

sen solution-which the designer may possibly consensus about how this recording should be
"execute" symbolically---and then translating this done. Current design methods do not include it as

into a detailed structure to act as the blueprint for part of the design process, nor do they provide
construction. It is generally possible to distin- any specific forms of representation for the pur-
guish between "architectural design" and pose. Such recording as does occur is likely to be
"detailed design" phases. The former is con- either by an individual or according to some
cerned with the general structure of a solution. It (relatively arbitrary) company practice.
may be influenced by consideration of the effects . Design by an individual vs. design by a
of factors such as the choice between implemen- group
tation using distributed or single processors, the
need for compatibility with existing structures, The process of design is made more complex
and likely future developments. Detailed design when more than one designer is involved, since
is more concerned with the formulation of the designers need to find a way of "splitting" the
blueprints for the particular solution and with problem. A group effort requires that an addi-
modeling the detailed interaction between its tional process of "negotiation" occur when the
components. For a discussion of the importance components of the design are brought together. A
of model-building in software design, see good decomposition of design tasks is one that
[Adelson85]. provides minimal, well-structured interfaces be-

f. The role of a design method tween modules designed by different people.

The role of a design method is to provide assis- References:

tance with the model-building and with the trans- Papers: Adelson85
lation process. A design method can be viewed Books: Abbott86, Birrel185, Fairley85,
as a plan of action based on a set of decision- Jones70, Peters8l, Pressman82,
making criteria (the "process" part) and supported Rombach87
by diagrammatic or symbolic forms that aid in 2. Design as a Step in System Development
building a particular form of model (the
"representational" part). The representations may Design is a major phase in the development of soft-
also provide a framework that assists with evalu- ware systems. The forms and roles it takes on in
ating the consequences of making particular de- two widely-used production models are described
sign choices. It may be necessary to make some here. The prototyping model is especially useful in
top-level decisions about the overall architecture the design of interactive systems and expert systems.
of a system before applying any method, and
some of these decisions will then act as a. Relationship of design to other activities
constraints upon the form of the final design. The role of design is best understood in the con-

g. Constraints on the design process text of the other activities involved in producing a
plan of action for the implementation. Require-

Ideally, the designer is concerned solely with pro- ments analysis identifies what is needed in a sys-
ducing the "best" possible solution to a problem. tem; specification describes what the system

6 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

should do; and design describes how that should "throwaway" code, and can be consid-
be done. Figure 1 shows these relationships and ered as enhancing the requirements
the resulting products. See [Rombach87] for a analysis and functional specification in-
fuller description of these roles. formation.

b. Production models A rather different approach to the use of prototyp-
ing techniques, with an emphasis on the use of

While such tasks as specification, design, and im- executable specifications and a more formal ap-
plementatdon need to be performed in all cases, proach to design, is discussed in [Henderson86].

there are a number of ways in which their inter-

actions can be organized. The two main forms References:
arc described below. Papers: Belady76, Henderson86

(i) Waterfall model Books: BirrelI185, Boehm8l, Budde84,
Fairley85, Pressman82, Rombach87,

This is widely discussed in the literature, ail- Sommerville85

though the detailed form shows some variabil-

ity. See the descriptions in [Birrel185] and in 3. Principles of Design

[Fairley85] for clear expositions, with diagrams. It is possible to identify certain properties that we
(ii) Incremental enhancement model expect a good design to possess in some measure,

with the balance of emphasis being apportioned
This is one role for the use of prototyping (see among these according to the class of problem and
below) and is discussed in the same references the needs of the particular application. Identifiable
cited for the waterfall model, features that a design should exhibit include those

c. Economic factors related to the functioning of the system, such as:

*Fitness for purpose--the system must
It is important to detect and eliminate errors dur- work, and work correctly, in that it should
ing design, since the earlier in the development perform the required tasks in the specified
process that errors are detected, the cheaper it manner and within the constraints of the
should be to correct them. The cost of software specified resources.
maintenance is also affected significantly by the • Robustness-the design should be stable
quality of a design. The economic issues of soft- against changes to such features as file and
ware production and maintenance are discussed in data structures, user interface, etc.
[Boehm8l1]. Desirable features include those facilitating mainte

d. Roles of prototyping nance and reuse, including:

For a fuller discussion of the different ways in * Simplicity-the design should be as simple

which prototyping may be used for the develop- as possible, but no simpler.

ment of software-based systems, see the paper by e Separation of concerns-the different con-
Floyd in [Budde84]. The three main categories of cepts and components should be separated
use identified by Floyd are: out (related closely to modularity).

* Evolutionary--adapting the system * Information hiding-information about the
gradually to changing requirements, detailed form of such objects as data struc-
which cannot be determined reliably in tures and device interfaces should be kept
the earliest stages of development (in- local to a module or unit and should not be
cremental development). The prototype directly "visible" outside that unit.
eventually becomes the product. We can also identify some features that a bad design

e Experimental-used to determine the is likely to exhibit and that will make it difficult to
adequacy of a proposed solution before read and understand the designer's intentions.
investing in large-scale implementation. Among these are:
This may involve investigating such * Having too much retained state informa-
features as performance and resource tion spread around the system.
needs, as well as the details of the e Using interfaces that are too complex.
human-computer interface. The proto-
type is essentially "throwaway" code. o Containing excessively complex control

* Exploratory-used to clarify require- structures.

ments and desirable features of the tar- Using modules lacking functional strength.
get system, and to evaluate alternate * Involving needless replication.
solutions. The prototype should be The issues that form the topics of this section are all

SEI-CM-2-2.1 Draft For Public Review 7

Introduction to Software Design

related to these lists of features. Because such fea- list of forms, roughly ranked from desirable to
tures are generally only made manifest through con- undesirable, is:
sideration of relatively detailed design structures, it 1. data coupling,
is also desirable to be able to relate them to more 2. stamp coupling,
abstract concepts, and so to the use of abstraction in
design. As a further categorization, it is useful to 3. control coupling,
distinguish between the constructional issues (which 4. common-environment coupling,
are essentially concerned with packaging and de- and
pendency), and the runtime issues (which involve 5. content coupling.
making decisions about such features as concurrency
and the calling hierarchy of procedures). c. Information-hiding

a. Abstraction This principle is widely accepted as a design cri-
terion [Parnas72, Parnas79] and forms a basis forThe increasing use of abstraction has been one of assessing a choice of modular structure. Basi-

the major factors in the development of a more cally, it involves concealing the details of the
structured approach to software design. The use structure and forms of certain objects and ensur-of abstract objects and operations upon them ing that these can only be accessed by those pro-
needs to be seen as central to any attempt to pro- cedures provided to implement the operations on

duce a well-engineered design. Abstraction al- those abstract objects.

lows the designer to model logical structures as

well as physical structures (or properties as well d. Completeness
as representations). This is primarily an issue of whether the design

b. Modularity meets all of the requirements of the specification,

This can be related to ideas about such issues as including any real-time or similar operational

separation of concerns and simplicity. Two well- constraints. It is largely concerned with the con-

established measures for assessing the partition- cept of fitnessfor purpose.

ing of a system into "modules" (which may be e. Design for maintenance
implemented as programs, packages, subpro-
grams, etc.) are cohesion and coupling. Cohesion Since the maintenance of software usually ab-
is concerned with the relationships among the ele- sorbs greater effort than its production, the design
ments making up a module, while coupling is process should recognize the need for future
concerned with the interdependencies between changes and modifications/enhancements of a
different modules. To make practical use of system, as indeed is encouraged by considering
these, the different forms that each measure can the use of information hiding. Consideration of
take must be related to particular implementation possible future changes also emphasizes the need
issues, such as the use of global variables. A for a design to be robust against possible changes.
good description of these measures can be found This issue generally supports the need to use good
in [Page-Jones8O0. practices, rather than imposing specific needs, but

it may impose requirements upon the detailed(i) Forms of cohesion form of the design, too. See [Birrel185] for a good

Seven forms of module cohesion (sometimes discussion of these points.

termed association) are commonly recognized. f. Design for reuse
In order, from highly desirable to undesirable
these are: Reuse represents a rather ill-defined and poorly

1. functional, understood area. While the practice of reuse of
software components is long-established and can

2. sequential, be extended to include the use of generic forms,
3. communicational, the reuse of design in any form is still relatively
4. procedural, new in concept. Ways of organizing for the reuse

of designer experience is quite well-established in
5. temporal, other branches of engineering, but within soft-
6. logical, and ware engineering even the reuse of a designer's
7. coincidental. own experience remains highly domain-depend-

ent [Adelson85]. Reuse is an issue of concern
(ii) Forms of coupling when considering design methods in detail.

While coupling is more quantifiable than cohe- g. Assessing a design
sion, the terminology used for the descriptions
of the main forms may vary a little more. A Design assessment is concerned with two major

issues:
8 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

" how well the design meets the specifi- cerned with establishing the rationale for using a de-
cation (completeness and correctness) sign method, identifying the general forms that soft-
and ware design methods have, and explaining the reasons

* how well-structured the design is why no one method can be regarded as being capable
(quality). of meeting the needs of other than a particular class of

problems.
In addition, any assessment must consider both 1. Role of Design Methods

" the static structures of the design and
" the dynamic performance of the imple- For those unfamiliar with programming-in-the-

mented system. large, some of the rationale for using a design prac-
tice (of any form) may need to be explained. TheIn order to match a design against the specifi- effects upon long-term factors such as maintenancecation, we are able to make use of design reviews should also be emphasised.

and expert opinion (see [Yourdon85D. In order to

assess the dynamic aspects, we may also be able a. Reasons for using a design method
to use some form of operational model or proto-
type. Where formal methods are used for both The reasons for using a design method need to be
specification and design, it may also be possible made explicit. A design method provides a
to use mathematical techniques for assessing the systematic means of organizing and structuring
static issues. the design process, as well as a set of criteria to

assist in making choices. It can provide a check-
The assessment of quality is more subjective. Al- list of actions, a means of building around partic-
though some of the same techniques can be used ular principles, and may provide further assis-
(such as design reviews), there is a need for some tance through the use of particular forms of nota-
form of design metrics to support these. Unfor- tion or diagrams. The importance of such an ap-
tunately metrics can only be used effectively with proach is particularly significant for larger sys-
well-defined design representations, and so there tems, where the use of a method establishes a
are relatively few guidelines available. (See common set of design goals for all the partici-
[Mills88] for a fuller description of metrics used pants.
with software.) Again, any assessment of the
dynamic qualities will need to make use of some b. Management benefits arising from the use of
form of modeling technique. a method

I Design verification The management benefits of using one or more
methods should be emphasised. The use of a

Formal methods make use of mathematical tech- "standard" method makes it easier for mainte-
niques to provide a means of verifying an initial nance designers to model and assess the likely
design for completeness and consistency. They effects of any changes they might need to make,
supply the formal correspondence between speci- since it helps them to understand the ideas and
fication and design [Berztiss87], so that the design models used by the original designer and to build
can be verified for completeness and consistency an equivalent model for themselves. During sys-
against the specification. Two of the most widely tem development, the use of a method also eases
used approaches are those based upon algebraic the hand-over of a design whenever staff changes
forms (such as OBJ-2, [Futatsugi85]) and the occur, since the new designers need to be able to
model-oriented forms (such as VDM [Bjorner82, reconstruct the necessary models and understand
Pedersen88] and Z (Hayes87]). Particular prob- the reasons behind particular choices.
lem areas for these methods include handling con-
currency and the extent of the mathematical c. Limitations of design methods
knowledge needed for their use. While a design method helps with the organiza-

References: tion of the design process, it does not, in any

Papers: Parnas72, Parnas79, Stevens74 sense, provide a "recipe" for producing a design
for a particular problem. Each instance of the

Books: Abbott86, Berztiss87, Berztiss88, design process will be both domain- and
BirrelI185, Bjorner82, Hayes87, application-specific, and takes place within the
Jensen79, Page-Jones80, constraints that the context imposes. (A useful
Pedersen88, Yourdon79, Yourdon85 analogy is to think of a design method as being a

II. Design Practices: General Issues set of instructions for producing a recipe. There
are detailed directions for laying out the pages

The material of the next few sections is concerned with and producing the photographs, but little guidance
examining the main managerial and technical features as to how much seasoning to put into a particular
of the design process. These sections are mainly con- dish.)

SEI-CM-2-2.1 Draft For Public Review 9

Introduction to Software Design

Design methods are also apt to be strongly a. Batch systems
oriented toward one domain of application,
through the criteria they use and the weightings The main feature of a batch system is that all of
these criteria are given. The user of a method its operating characteristics are essentially deter-
needs to be fully aware of any such underlying mined when it begins processing one or more data
assumptions. streams. Any changes that occur to these charac-

teristics arise because of the contents of the
d. General forms of systematic and formal streams, when considered as sequential flows of

design methods data. Such a system should perform operations
that are deterministic and repeatable. (An ex-

Design methods can be broadly classified as ei- ample of a batch system is a compiler.)
ther systematic methods or formal methods. For-
mal methods largely depend upon the use of b. Reactive systems
mathematical notation in order to allow consis- The principal characteristic of a reactive system is
tency checking and rigorous transformations. the iti eventerithe on being syst is
Systematic methods are generally less mathemati- that it is even-driven, the events being almost al-
cally rigorous in form, and usually consist of a ways asynchronous and non-deterministic. (A
"process" part describing what actions should be screen editor is an example of a reactive system.)

performed, and a "representational" part that de- In addition, the specifications of the required re-
scribes how relevant structures may be repre- sponses to events often include quite explicit re-

sented. Some systematic methods, such as JSP or quirements about timing.

SSADM, may be highly prescriptive in nature, c. Concurrent systems
while others specify the actions for each step of
the design process less completely. In general, Such systems are characterized by the use of mul-
the techniques from systematic methods can be tiple threads of execution, utilizing one or more
combined, and can make use of representations processors. They generally require that the proc-
adapted from other forms, when and as appro- ess of design should consider such issues as
priate. scheduling overhead, mutual exclusion, and

References: synchronization of processes in the system.

Books: Bergland8l, Birrel185, Fairley85 References:

2. Classification of Systems Papers: Bergland8l
Books: AlIworth87, Bergland8l, Connor85

When describing problems that are to be "solved" 3. Design Strategies
through the use of software-based systems, we often
group those that possess similar characteristics and This section aims to identify the general design strat-
refer to these as a "problem domain." Such a domain egies that underly the different methods discussed in
may be very broad (for example, "data-processing the next few sections. At this level, we are only
systems," "real-time systems") or quite tightly-de- concerned with how these methods differ in terms of
fined (for example, "compilers"). For particular de- "strategy" and with the possible shortcomings or
sign methods, we also refer to the "domain of strengths of the various approaches.
application," by which we generally mean the
classes of problem for which a particular method is There are two broad strategies that can be adopted.
well-suited. Both the "problem-oriented" and The first begins with a very abstract description of a
"solution-oriented" views may be of use to a desig- solution and gradually refines this to produce a more
ner at different times. detailed solution (stepwise refinement). This strat-

egy is often referred to as a top-down process, and it
Because the domains of application for design meth- is essentially requirements-based. The second strat-
ods are ill-defined, it is generally impossible to at- egy is based upon modeling the problem domain in
tempt to make any "comparative methods" form of some way, with the purpose of gradually building up
evaluation or assessment. However, some general a solution by adding features and viewpoints. This
scheme of classification of systems may help in dis- can be considered as a strategy based upon a process
cussing particular methods, and a scheme of batch, of composition.
reactive, and concurrent forms is described below.
Many problems will lead to software systems that a. Top-down strategies
are a combination of more than one of these clas- The top-down approach can be considered a
sifications, so they should not be considered as "divide and conquer" approach to problem-
being mutually exclusive. Real-time and embedded solving and design. Te focus of the approach is
systems can generally be classified in this way, but functional decomposition. The need for a full un-
they involve additional constraints upon size, perfor- derstanding of the problem at the outset is essen-mance, and structure.

10 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

tial, since most of the important decisions must be tively standard techniques and structures have
made early on in the design process. Wrong deci- been evolved for the production of compilers.
sions may therefore lead to significant problems Where such a model exists, the adoption of a
or result in the need for a major redesign. Even more general design strategy is usually of little
where decisions made are not necessarily value or purpose.
"wrong" ones, different choices made at an early
stage may result in significantly different design References:
structures and features. Any attempt at producing Papers: Wirth7l
a "stable" solution will therefore usually involve Books: Bergland8l, Cameron83
some iteration in the process of decomposition, in 4 Desi Representations
order to explore the effects of different choices.

The use of diagrammatic and textual information to
(i) When to stop subdividing represent different viewpoints of a design is an im-

For any process of subdivision, it is necessary portant tool for the designer. While most represen-
to identify some "atomic" level at which any tations are normally introduced within the context of
further decomposition provides no useful a particular design method, designers can, and do,
return. Designing by stepwise refinement make use of representations in a method-indepen-
alone lacks any firm guidelines on this issue. dent manner as a part of the problem-solving proc-

ess. The role of each form should be identified in
(ii) Problems of replication and terms of its level of abstraction, its use for such put-

recombination poses as supporting modeling during the earlier

A sequence of refinements is likely to produce stages of design, and for providing "blueprints" in
the later stages. Indeed, one view of the design

some duplication of low-level operations. "process" is that it consists of a series of
Where more than one designer is involved, transformations between "representations." This, in
these may prove difficult to recognize, but they turn, suggests a framework for categorizing forms of
do need to be resolved. representation. Figure 3 shows a classification, in

(iii) Use as a preliminary step in other design terms of their roles, of the forms listed here.
methods a. Data flow diagrams (DFD)

Top-down design is often be used as a prelimi- These are "directed graphs" in which the nodes
nary step in other design methods, especially represent processing activities and the arcs spec-
where there is a need to separate concurrent ify the transfer of information between these.
components of a system. It may be of value in Good references with examples are (DeMarco7g]
distinguishing the major modules of a system, and [Page-Jones80]. More formal realizations are
and in dividing tasks among a team of desig- also in use, and examples of such a form (as used
ners. with SSADM) are given in (Downs88].

b. Design by composition, evolution of design b. HIPO diagrams
methods

HIPO diagrams (Hierarchy-Process-Input-Output)
The emphasis in a top-down approach tends to be were developed at IBM as design representations
upon operations, while the composition approach for use in the development of software by top-
makes use of entities or objects, modeling these down techniques and for the documentation of
and the operations performed upon them. The released products. For examples see [Fairley85,
trend in the evolution of systematic design meth- Martin84].
ods is toward a greater balance between objects
and operations in formulating the description of c. Structure charts
the solution. (We can regard an emphasis on
operations alone as being equivalent to describing These are tree-like diagrams used to represent the
a solution by using only verbs and adverbs, aun-time calling hierarchy of the modules forming
whereas adding to this through the use of objects a sequential program. They were originally de-provides us with the nouns needed to provide a veloped for use with Structured Systems Analysisfuller description.) and Structured Design [Page-Jones80, Yourdon-

79]. A number of variant forms exist, and a

c. Stylized design somewhat similar form with a different interpreta-
tion is also used in JSP [Cameron83, Inge-

In a few domains of application, it may well be valdsson86, Jackson75], where it is termed a
that a strongly stylized model of a "good" solu- Structure Diagram. (See also Entity Structure
tion already exists. An example of such a domain Diagrams, below.)
is compiler writing, in which a number of rela-

SEI-CM-2-2.1 Draft For Public Review 11

Introduction to Software Design

Phase Purpose Suitable Forms

Architectural Modeling the problem Data flow diagrams
Design

Modeling the outline solution "Block" diagrams
Data flow diagrams

Detailed Describing hierarchical structure Structure chart
Design Entity-structure diagram

System structure diagram
Pseudocode

Describing data structure Structure diagram (JSP)

Describing the solution logic Decision table
Finite state machine
Statechart
Pseudocode

Describing the packaging Structure graph
"Block" diagrams

Figure 3. Classification of representation forms.

packaging of the elements of a system [Buhr84].d. Decision tables The form is strongly oriented to use with the Ada

Used to specify complex decision logic at the programming language, although it is also useful
level of detailed design. Some examples are with programming languages such as Modula-2.
given in [Fairley85]. i. Finite state machines

e. Entity structure diagrams (JSD) Used to specify operations in terms of sets of in-

Jackson's form of Structure Diagram is also used puts and outputs, sets of states, and functions.
for modeling the structure of design entities. In Can be used at all levels of design abstraction.
particular, it provides information about the time- [Birrel185] gives some simple examples.
ordering of the actions performed by an entity. j. S
See examples in (Cameron83] and [Sutcliffe88].

Devised by Harel for use in describing large and
f. System specification diagrams (JSD) complex reactive system [Harel88]. Their claimed

This form is used to represent the network of advantage over mechanisms such as Finite State
processes in a system, and also the communica- Machines includes the provision of hierarchy, a
tion links between them. See [Cameron83] and brevity of form, and the ability to describe con-
[Sutcliffe88]. current operations.

g. Entity history diagrams k. Petri nets

A form of diagram used in SSADM. They are These are used to model the interactions of con-
related to the entity-structure form used in JSD to current systems by showing causal relationships.
represent the time-ordered actions of a design en- See [Birrel185] for examples.
tity. See [Downs88. I. Pseudocode

h. Structure graphs Used for describing sequential algorithms for de- U
A form of block diagram used to describe the tailed program structures. Sometimes termed

"Structured English."

12 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

m. Formal design languages and any components of these. Describing the
data, correlating the data dictionary to the data

Mathematically-based languages may be used to flow diagrams, the treatment of aliases, the defini-
facilitate formal reasoning about the properties of tions in the data dictionary, data structures, data
a design. Algebraic forms such as OBJ-2 flows and data stores, and the implementation of a
[Futatsugi85] provide a property-oriented descrip- data dictionary are all problems to be dealt with at
tion which is based upon the definition of objects this stage. Steps to be performed are:
and operations upon them described in terms of
axioms. The model-oriented forms such as VDM * Describe the data in a logical form.
[Bjerner82, Pedersen88] and Z [Hayes87] use a * Describe data structures, data flows, and
description based upon defining objects and data stores.
operations built from a basic set of pre-defined e Correlate the data dictionary with the
types and their characteristic operations. data flow diagram.

References: * Data dictionary implementation.

Papers: Bergland8l, Hare188, Stevens74 c. Describe process logic
Books: BirreI185, Bjorner82, Buhr84,

Cameron83, DeMarco79, Downs88, In this phase, the designer is concerned with de-
Fairley85, Hayes87, Martin84, scribing the operations involved in the DFD (that

Pedersen88, Peters8l, Sutcliffe88, is, the actions implied by the bubbles'). Issues

Yourdon79 involved are:

II. Design Practices: Design Methods * Analyzing and presenting process logic.
: Use of Structured English or pseu-

The sections in this part of the module provide outline docode.
descriptions of a selection of widely-used design meth-
ods that represent a range of principles, features and d. Deriving a structured design from the logical
forms. model

1. Structured Systems Analysis and Structured This phase involves deriving the hierarchical pro-
Design gram design from the non-hierarchical DFD. The

steps are:
The related techniques of Structured Systems Anal- - Control considerations.
ysis [DeMarco79, Gane79] and Structured Design
[Page-Jones80, Yourdon79] together form a system * Changeability considerations/Domain
design technique based upon decomposition. How- of change.
ever, they make use of data-flow considerations, • Module coupling/Cohesion, binding.
rather than being based solely upon function as a * Transtoi- Analysis.
criterion. * Refining the design, including use of
a. Problem decomposition (SSA) design heuristics.

The analysis step is an initial model-building * Error and exception handling.
process based upon the use of Data Flow * Use of Transaction Analysis.
Diagrams (DFDs). These are drawn, expanded
and analyzed in this initial step. The initial DFDs Teaching Consideration: Before describing the proc-
may describe existing physical processes, but the ess. it may be useful to reiterate the quality issues that
final forms should be concerned only with logical are involved when making choices between design op-
processes that occur within the system. The basic tions. The process of transform analysis can then besses astou t. b used in conjunction with these, and the resulting need

to refine the design, adding such features as exception
" Draw data flow diagrams. handling, should be described. The supplementary
" Refine and evaluate DFDs. technique of transaction analysis should be discussed.

" Check DFDs for consistency and for
data conservation. e. An assessment of SSA/SD

b. Create a data dictionary (i) Domains of application

This technique is primarily oriented toward the
The Data Dictionary is concerned with recording design of sequential programs, although in
the information content of data, rather than with principle there is potential for basing a concur-
its physical realization. It augments the DFD by rent design upon the DFD. This, together withdefining any data forms mentioned in the DFD, the emphasis upon information flow, has led toincluding data flows, data used within processes, this method being widely used in data proc-

essing systems.
SEI-CM-2-2.1 Draft For Public Review 13

Introduction to Software Design

(ii) Major strengths put, it is quite possible that these may be organ-
ized and structured using different "keys" (an

The DFD is readily comprehensible to the end ordering clash) or that one of the streams may
user, who can therefore provide direct input to contain multiple record types (which can lead to
the design process. The method is generally an interleaving clash). JSP has techniques to help
well-documented and is supported by a number cope with these and with some of the other forms
of software tools, primarily graphics editors. of structure clash that occur.

(iii) Major weaknesses d. Program inversion

The steps involved in transform analysis and A simple JSP design assumes a program that
transaction analysis appear to draw strongly reads and writes a set of serial data streams. The
upon heuristic knowledge and lack clear technique of program inversion is used to reor-
procedural guidelines for such operations as ganize the design about one or more of its data
locating the central transform. More generally, streams, so as to allow the program to be sus-
the emphasis is upon dataflow rather than upon pended and resumed, to provide a "conversa-
the encapsulation of data structures. tional" form of operation.

References: e. An assessment of JSP
Papers: Stevens74 (i) Domains of application
Books: Connor85, DeMarco79, Gane79,

Linger79, Myers78, Page-Jones8O, JSP is used for the design of sequential pro-
Yourdon79 grams. Because of the emphasis upon data

structure, it has been used widely for the design
2. Design by Modeling the Problem: JSP and JSD of data processing systems, although tech-

a. JSP and JSD principles and the relationship niques such as program inversion make it pos-
between the two methods sible to use JSP for a wide range of program

forms.
These methods are based upon a process of
composition. JSP (Jackson Structured Program- (ii) Major strengths
ming) is a program design method concerned with
smaller, largely sequential, problems. It is highly The method is highly prescriptive. Hence, dif-
prescriptive in its form. JSD (Jackson System fement designsc
Development) extends the philosophy used in JSP similar designs.
into a larger domain of application. Its model is (iii) Major weaknesses
based upon a set of disconnected processes.
Time-ordering is an important dimension for both The method becomes too complex for larger
methods. systems that have many structure clashes.

b. JSP design process f. Extension of philosophy to JSD

The main steps in JSP are listed below: The JSD method makes use of an entity-action-

* Describe data streams using structure attribute model of the world, and this is built up
diagrams. and connected to the "real" world through a seriesof well-defined steps and operations.

" Merge these to create the program struc-

ture diagram. g. Concept of entity-action-attribute
" List operations and allocate to elements The core of this method involves modeling the

in the program structure, problem in terms of a set of entities and their
" Convert the program to text without actions, and of the attributes associated with

conditions. these actions. In the later steps, the method ex-
* Add iteration/selection conditions. tends the model to include the interactions be-

tween entities, as well as between entities and the
Teaching Consideration: JSP should be introduced by world external to the model. It models the timing
using a fairly simple sequential problem. The syntax issues involved in these.
and semantics of the Structure Diagrams will need to
be reiterated. h. Steps involved in JSD

Note that JSD is still evolving. The form de-
c. Handling multiple inputs in JSP-structure scribed in [Jackson83] has been revised slightly.

clashes The form described here is taken from[Cameron83] and [Sutcliffe88]:
When there are multiple data streams used for in-

14 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Entity/Action and Entity Structure step. a. The concept of objects
Initial model step. Software-based systems can be modeled in terms
SInteractive function step. of objects and operations, rather than in terms of

* Information function step. data and procedures. Although it is oriented
toward the Smalltalk-80 system, a useful refer-

* System timing step. ence here is [Robson81], which makes this dis-
* Implementation. tinction very clearly.

i. An assessment of JSD b. Abstraction, information-hiding, modularity
(i) Domains of application and localization

Primarily intended for large (and possibly These issues should be drawn out within the con-
concurrent) systems where the time-ordering of text of OOD. A useful collection of references is
events is important. Both data processing and available as [Peterson87a] and [Peterson87b].
process control systems are suggested as ap- Note particularly the 1984 paper by Shaw
propriate domains of application. [Shaw84].

(ii) Major strengths c. Steps involved in object-oriented design

The method is relatively prescriptive for the The basic design steps of OOD are:
model-building (analysis) steps. It encourages * Define an informal strategy for the
the use of abstraction and makes good use of problem solution.
an "object-oriented" philosophy. While the * Identif the obects used in the informal
later steps are less prescriptive, they still pro- strategy.
vide a well-defined framework for the proc-
esses involved. * Identify the operations on the objects

used in the informal strategy.
(iii) Major weaknesses * Define the software system architecture

The JSD approach breaks down for data struc- and interfaces to the operations.
tures and relationships that cannot reasonably * Iterate the above process as needed.
be described in terms of histories of events.
The overhead of the method is too large to Teaching Consideration: OOD should be described
make its use with small problems worthwhile, with the ,zid of an example. [Booch86] gives some
and learning enough about the method to be useful ideas about this.
able to make full use of it takes a long time.

References: d. Limitations/problems in applying
Papers: Cameron86 object-oriented design

Books: Cameron83, Connor85, This method needs an initial solution modeling
lngevaldsson86, Jackson83, stage to help with formulating the informal strat-
Sutcliffe88 egy. In the absence of any specific guidelines for

the method, this task is likely to draw upon the
3. Object-Oriented Design (QOD) analysis techniques of other methods.

The term "Object-Oriented" has acquired a number e. An assessment of QOD
of meanings and interpretations, both for program-
ming and for design. There is no one clear defini- (i) Domains of application
tion of exactly what is meant by the term "Object- A fairly general range of applicability, al-
Oriented Design." This degree of variation in the use though there seem to be few examples of its
of the term should be borne in mind when reading use for data processing problems.
any literature on this topic. For the purposes of this
module, Object-Oriented design is presented as a (ii) Major strengths
method for modeling a problem by taking a balanced Well-matched to current developments in the
view about objects and the operations performed form of imperative programming languages
upon them, along the lines suggested by Booch form of iat proran g lnug
[Booch86, Booch87]. By being data-oriented this such as Ada, Modula-2, and C++.
method differs from the previous methods which are (iii) Major weaknesses
all essentially process-oriented, even when using
data flow or data structure to aid in identifying the The form of the solution is overly dependent
processes and their forms. upon the structure of the initial informal strat-

egy, and the method does not provide enough
support for the initial identification of objects.

SEI-CM-2-2.1 Draft For Public Review 15

Introduction to Software Design

References: d. SSADM

Papers: Abbott83, Booch86, Rentsch82, SSADM (Structured Systems Analysis and De-
Robson8l, Shaw84 sign Method) provides an example of a highly

Books: Booch87, Peterson87a, prescriptive form of design method, using three
Peterson87b, Wiener84 viewpoints of data and providing explicit means

4. Some Other Systematic Design Methods for cross-checking among them. Developed in
the U. K., this method is acquiring a published

The design methods described in the preceding sec- "standard," rather akin to the former registration
tions are examples of the application of particular accorded "Ada". [Downs88] provides a very clear
philosophies of design. All are quite widely used. description of the method, together with some ex-
However, there are other design methods in use, and amples of its use.
this section provides brief summaries of some of
them that are widely-used and well-documented. References:
The list is in no way intended to be exhaustive or Papers: Bergland8l
definitive. It is important, however, that the student Books: Bergland8l, BirreIl185, Connor85,
be aware that other systematic methods do exist. Downs88, Fairley85, Freeman80,

Teaching Consideration: Some of these design methods Linger79, Marca88, Miils86, Orr77,
can be used to illustrate particular points in class. Due to Peters8l, Riddle79, Warnier80
the background of instructor or students, some of these IV. Review of Design Practices
methods may be more appropriate topics of study than
aforementioned design methods. The purpose of the final part of the module is to draw

together, summarize, and analyze the content of the
a. Structured Analysis and Design Technique previous parts. From this it is possible to give some

(SADT) guidance on the question of "suitability for purpose"
for methods when used in particular domains of appli-

SADT takes a data-flow view of what are essen- cation, and also to identify the current trends in design
tially top-down analysis and design activities, practices.
using a somewhat individual notation based on
actigrams and datagrams. In particular, this 1. Some Assessments of Design Methods
method contains a strong project organization ele- This section presents a general assessment of the
ment. Some brief but good examples are given in design methods currenty in use. The extent to
[Birrel85] and [Fairdey85], and a complete and de- which particular methods encourage the designer to
tailed description is available from (Marca88. produce designs that are "well-structured," in terms

b. The Warnier-Orr approach of the generally-accepted design principles, is con-
sidered as a useful and important feature to be in-

Warnier's Logical Construction of Programs cluded in this assessmenL Criteria for choosing a
(LCP), his Logical Construction of Systems design method for a particular problem classifica-
(LCS), and the Warnier-Orr Structured Systems tion, including specific issues that apply to each
Design technique all have roots and philosophy class of problems, are considered.
similar to those of JSP/JSD. The diagrammatic
form used in LCP is somewhat different from that a. General assessment of methods
of JSP, but like JSP, this method is highly Considerations for design method assessment:
prescriptive in form [0rr77, Warnier8O]. e Design philosophy and selection crite-

c. Stepwise Refinement with Verification ria.
(Mills) * Prescriptive elements of the method.

This method is described in (Linger79] and places e Suitable domains of applicability.
emphasis upon the use of mathematical forms, e Scope for direct assessment of quality in
rather than graphical notations. (It is not a the method.
"formal method," in the accepted sense of that
term, however.) Both data abstraction and func- Teaching Consideration: Design methods should be
tion abstraction are used in the design process, discussed in terms of the above. An "evaluation
and the use of mathematical notation assists with matrix" as used in [Blank83] may prove helpful in
the verification phase. [Linger79] is primarily presenting this material, but because different methods
concerned with detailed design, while (Mills86] are suited to different domains of applicaion. it is
addresses the issues of more general problem neither practical nor useful to attempt any form of
decomposition. comparative assessment of methods in the sense of at-

tempting to rank them.

16 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

b. The use of software tools to support design b. Trends in the development of design methods
methods Some current trends are toward using a more
There are a number of tools available for use in balanced approach to problem modeling and also
developing designs using particular design mcth- toward using a greater degree of mathematical
ods. Most of these tools are relatively "passive," formalism. A relatively new influence is that of
in that they provide facilities to support the cognitive science, which considers the modeling
"representational" part of a method (such as process from the viewpoint of the modeler and his
graphics editors), without providing any form of ability to handle particular concepts. Develop-
support for the "process" part. ments in imperative programming languages (in

Ada, Modula-2, C++) are having significant in-
c. Selecting appropriate design approaches for fluence on design methods as well.

classes of problems

The matching of design methods with design Rferences:

problems is something of a "horses for courses" Papers: Yau86
situation, in that selecting the most appropriate Books: Freeman80
method (approach) will depend upon many fac-
tors, including

" the nature of the problem;
" company/project practices; Glossary
* available experience with particular de-

sign methods; abstraction
" scope for reusing existing design com- A view of a problem that extracts the essential

ponents; and information relevant to a particular purpose and
" other personal/local factors. ignores the remainder of the information

In making trade-offs between these factors, a [IEEE83].
designer needs to have an appreciation of any
overhead that particular choices may involve (for batch
example, the amount of time needed to learn, say, A form of processing in which input data
JSD, as against Structured Design; the likelihood streams are processed sequentially and with no
of being able to reuse that knowledge of a design interaction with any form of user. Contrast with
method; the benefits that might be gained from reactive.
using available software tools; etc.).

References: cohesion

Books: Bergland8l, Connor85, Freeman80, The degree to which the tasks performed by a
Peters8l, Riddle79 single program module are functionally related.

2. Trends and Developments Contrast with coupling [IEEE83].

The evolution of design methods should be re- complexity
viewed, examining the changes that have occurred in The degree of complication of a system or sys-
terms of criteria used, basic cognitive models, de- tem component, determined by such factors as
sign representations, domain of applicability etc. the number and intricacy of interfaces, the num-
This section should consider the relationship be- her and intricacy of conditional branches, the de-tween systematic and formal design methods, and braditiayo odtoa rnhs h etweesseaic atnd forl deboth of these ap- gree of nesting, the types of data structures, andshould examine the trends for other system characteristics [IEEE83].
proaches.

a. Evolution of design methods concurrent processes

While it may be difficult to place specific dates Processes that may execute in parallel on multi-
on design methods, since they usually evolve over pie processors or asynchronously on a single
a period of time, it may be useful to consider a processor. Concurrent processes may interact
chart showing the historical development of de- with each other, and one process may suspend
sign methods and the major influences upon each execution pending receipt of information from
one. As with programming languages, some another process or the occurrence of an external
methods are essentially dead-ends, while others event [IEEE83].
may spawn a number of developments that take
an idea and expand upon iL

SEI-CM-2-2.1 Draft For Public Review 17

Introduction to Software Design

coupling JSP
A measure of the interdependence among mod- Jackson Structured Programming [Cameron83]
ules in a computer program. Contrast with
cohesion [IEEE83]. metric

A parameter used as a measure of some program
data abstraction or system attribute, usually concerned with as-

The result of extracting and retaining only the sessing quality.
essential characteristic properties of data by de-
fining specific data types and their associated modularity
functional characteristics, thus separating and The extent to which software is composed of
hiding the representation details. See also discrete components such that a change to one
information hiding [IEEE831. component has minimal impact on other compo-

nents [IEEEB3].

data dictionary

A collection of the names of all data items used product
in a software system, together with relevant An entity designated for delivery to a user.
properties of those items; for example, length of
data item, representation, etc. [IEEE831. prototype

A component of a software development cycle
design method that is used for evaluation purposes. For a fuller

A systematic approach to creating a design, con- discussion, see [Budde84].
sisting of the ordered application of a specific
collection of tools, techniques, and guidelines reactive
[IEEE83]. A form of processing in which the program's

exception operations are determined through interaction

An event that causes suspension of normal p with external processes. Contrast with batch.
ess execution [IEEE83I. real-time

Pertaining to the processing of data by a com-
generic software components puter in connection with another process outside

System elements that are parameterized in such the computer according to time requirements im-
a way that they can be used with different data posed by the outside process. This term is also
objects without its being necessary to modify used to describe systems operating in conver-
their form. sational mode, and processes that can be in-

fluenced by human intervention while they are
HIPO diagrams in progress [IEEE831.

Hierarchy-Process-Input-Output diagrams, de-
veloped at IBM to help represent schemes for reusability
top-down software development, and as aids to The extent to which a module can be used in
the documentation of released products. multiple applications [I EEE83].

information hiding SADT
The technique of encapsulating software design Structured Analysis and Design Technique. The
decisions in modules in such a way that the two main forms of diagram used with this are
module's interfaces reveal as little as possible the actigram and the datagram. For examples,
about the inner workings of the module; thus, see [Fairley85, Marca88].
each module is a "black box" to the other mod-
ules in the system [IEEE83]. software life cycle

JSD A typical sequence of phased activities that rep-
resent the various stages of engineering through

Jackson System Development [Cameron83, which a software system will normally pass.
Sutcliffe88].

18 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

software maintenance
The process of modifying a product after
delivery in order to correct faults (corrective
maintenance), to improve performance or other
attributes (perfective maintenance), or to adapt
the product to a changed environment (adaptive
maintenance).

SSADM
Structured Systems Analysis and Design Meth-
od, derived from work done by Learmonth, Bur-
chett Management Systems (LBMS). See
[Downs881.

D

SEI-CM-2-2.1 Draft For Public Review 19

Introduction to Software Design

Teaching Considerations

Suggested Schedules Exercises

The material in this module can be taught in differ- The most obvious teaching stcategy is to single out
ent ways, depending on the time available. Table 1 one design method for extended discussion and ex-
at the end of this section presents suggestions for ercises. It should be emphasized, however, that stu-
three different schedules. The first requires about 30 dents who have taken a single course based upon
lecture hours, as might be available in a full semester this material should not be expected to undertake de-
course on software design. The second requires sign tasks requiring the detailed use of any design
about 19 hours and might be appropriate for a course method.
that combines software specification and design.
The third requires about 9 hours, as in a course that
surveys many aspects of software engineering.

Worked Examples

The demonstration of various design methods
through worked examples is -valuable in teaching
this material. Three example problems frequently
referenced in the literature are the following:

1. Text Formatter. This is a program that
reads in one or more files that contain
text, together with embedded formatting
commands, and generates a nicely for-
matted output document. It is an ex-
ample of a straightforward batch process.

2. Library Record Maintenance. This is
a program that maintains a set of records
on book holdings and issues for a library.
In this form, it is both sequential and
reactive, but it could be extended to have
a concurrent structure.

3. Elevator Control. This is an example of
a concurrent system that contains re-
active components. It can also be con-
sidered as an example of an embedded
system.

The value of these examples is enhanced if the stu-
dents see the same problems as examples of require-
ments specification, design, implementation, and
testing. However, because design methods are op-
timized for different domains of application, the in-
structor is advised against seeking to use the same
example problem for demonstrating different meth-
ods. Where only limited time is available for teach-
ing this material, JSP may provide the most conven-
ient basis for a worked example that is concise and
illustrates clearly the use of both the "process" and
"representational" components of a design method.
20 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Table 1. Suggested Schedules

Topic Full Syllabus Medium Syllabus Short Syllabus
Sections Hrs Sections Hrs Sections Hrs

I. The Role of Software Design
1. The Design Process a.-i. 2.0 a.-i. 1.5 a.-i. 1.0
2. Design as a Life-Cycle Phase a.-d. 1.0 a.-d. 1.0 a.-c. 0.5
3. Principles of Design a.-b. 2.0 a.-b. 1.5 a.-d. 1.0

c.-d. 1.0 c.-f. 1.5 e.-h. 1.0
e.-f. 1.0 g.-h. 1.0
g.-h. 1.0

Subtotal for Part I 8.0 6.5 3.5

II. Design Practices: General Issues
1. Role of Design Methods a.-d. 1.0 a.-d. 0.5 a.-d. 0.5
2. Problem Classification a.-d. 1.0 a.-d. 0.5 a.-d. 0.5
3. Design Strategies a.-c. 1.0 a.-c. 0.5 a.-c. 0.5
4. Design Representations a.-m. 3.0 a.-m. 2.0 a.,c. 0.5

e.,h.,1. 0.5

Subtotal for Part II 6.0 3.5 2.5

Im Design Practices: Design Methods
1. Structured Analysis and Design a.-e. 2.0 a.-e. 1.0 a.-e. 1.0."" la. Worked Examples of Structured Design * * * * 0.0
2. Jackson's Methods a.-i. 2.0 a.-i. 1.5 a.-f. 1.0
2a. Worked Examples using Jackson's JSP

Method * * * * 0.0
3. Object-oriented design a.-e. 1.5 a.-e. 1.0 a.-e. 0.5
3a. Worked Examples of Object-Oriented

Design * * * * 0.0
4. Other Systematic Design Methods a.-d. 1.0 a.-d. 1.0 a.-d. 0.0
4a. Examples of other methods * * * 0.0

Subtotal for Part III 6.5 4.5 2.5

IV Review of Design Practices
1. Some Comparisons a.-c. 1.0 a.-c. 0.5 a.-c. 0.5
2. Trends and Developments a.-b. 0.5 a.-b. 0.5 a.-b. 0.0

Subtotal for Part IV 1.5 1.0 0.5

• Total time devoted to worked
examples 4.0-8.0 3.5 0.0

TOTAL TIME 26.0-30.0 19.0 9.0

SEI-CM-2-2.1 Draft For Public Review 21

Introduction to Software Design

Comments:

This table is intended to serve as a guideline for the relative amount of time to be spent on each topic.

Full Syllabus The instructor could spend a total of 4 to 8 hours on some, but not necessarily all, the

worked examples.

Medium Syllabus Most of the topics are covered, but less time is spent on each topic than in the full
syllabus. Only one of the worked examples is discussed.

Short Syllabus A number of topics are omitted, and the worked examples are not discussed.

22 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Bibliographies

Textbooks Berztlss87
Berztiss, A. Formal Specification of Software. Cur-

This section describes textbooks and reports cover- riculum Module SEI-CM-8-1.0, Software Engineer-
ing various aspects of software engineering. All of ing Institute, Carnegie Mellon University, Pitts-
them contain material relevant to software design, burgh, Pa., Oct. 1987.
and a number of the entries are primarily devoted to
describing specific methods used in software design. Berztiss88
The annotations provided are mostly in two parts- Berztiss, A., and M. A. Ardis. Formal Verification
the first part providing general comments on content, of Programs. Curriculum Module SEI-CM-20-1.0,
the second part containing suggestions of how the Software Engineering Institute, Carnegie Mellon
reference may be used for teaching. University, Pittsburgh, Pa., Dec. 1988.

Abbott86 BirreII85
Abbott, R. J. An Integrated Approach to Software Birrell, N. D., and M. A. Ould. A Practical Hand-
Development. New York: John Wiley, 1986. ISBN book for Software Development. New York: Cam-
0-471-82646-4. bridge University Press, 1985. ISBN 0-521-25462-

0.
A general text on software engineering that is or-
ganized as a collection of annotated outlines for Provides a good overview of the software engineer-
technical documents that are important to the devel- ing view of system development, supported by an
opment and maintenance of software. overview of a wide range of the techniques that are

available to support each phase of development.
AIlworth87 The latter half of the book covers a wide range of
Allworth, S. T., and R. N. Zobel. Introduction to design issues, together with examples. The book
Real-Time Software Design, 2nd Ed. New York: makes particularly good use of diagrams to help
Springer-Verlag, 1987. ISBN 0-387-91307-6. make its points.

A good book for students to use in an introductoryOne of the few books that is devoted to this panic- cors on design.

ular and rather specialized aspect of software de-
sign. The book makes good use of the concept of a
virtual machine for design of such systems and is BJorner82
well provided with diagrams. Much of the discus- Bjomer, D., and C. B. Jones. Formal Specifications
sion is concerned with detailed design issues. The and Software Development. Englewood Cliffs,
book pulls together into a single theme material N. J.: Prentice-Hall, 1982.
taken from diverse areas.

The primary concern of this text is the development
The instructor might find this a useful text to refer of formal specifications, with emphasis being
to when looking at domain-specific issues. placed upon the need to be able to relate design to

specification. It contains chapters by a number of
Bergland81 authors describing aspects and applications of VDM
Bergland, G. D., and R. D. Gordon. Software Design (Vienna Development Method), presented at an ad-
Strategies, 2nd Ed. Washington, D. C.: IEEE Com- vanced level and requiring some background in dis-
puter Society Press, 1981. ISBN 0-8186-0389-5. crete mathematics.

Several major design strategies are developed and A book for the instructor rather than for the student.
compared in this tutorial text, including functional
decomposition, Jackson's JSP method, and data Blank83
flow design. The process of organizing and coor- Blank, J. and M. J. Krijger, eds. Software Engineer-
dinating the efforts of the design team and descrip- ing: Methods and Techniques. New York: Wiley-
tions and use of several design tools currently used Interscience, 1983. ISBN 0-471-88503-7.. in industry are also presented. Contains a useful
key word index at the end of the book. A report produced by the Information Structures

Subgroup of the Dutch Database Club, which aimsEssential collection of papers for the instructor, to evaluate and compare a number of different de-
Contains some useful reading material for students.

SEI-CM-2-2.1 Draft For Public Review 23

Introduction to Software Design

sign methods. Many of the methods will be unfa- This book should be part of the prerequisite reading
miliar to most readers, although the list does include for every student who aspires to study software en-
more widely-known methods such as SADT, gineering.
Warnier-Orr, and JSD. A summary of the features
of each method is included. Budde84

The use of an "Evaluation Matrix" as a means of Budde, R., K. Kuhlenkamp, L. Mathiassen, and
presenting information about the features and appli- H. Zullighoven, eds. Approaches to Prototyping.
cation areas of a method is an interesting feature. It New York: Springer-Verlag, 1984. ISBN 0-387-
can provide useful material for the instructor. 13490-5.

Boehm8l A collection of papers from a workshop held to
study the use of different forms of prototyping in

Boehm, B. Software Engineering Economics. systems design and development. The opening
Englewood Cliffs, N. J.: Prentice-Hall, 1981. ISBN paper gives a good review and taxonomy for the
0-13-822122-7. field.

Boehm is particularly well known for his COCO- Can provide useful reference material for both in-
MO cost estimation model. This book provides a structor and students.
practical introduction to the planning and estimation
tasks that are involved in software development. It Buhr84
provides a somewhat different insight into the de-
sign process and trade-offs and related issues that Buhr, R. J. A. System Design with Ada. Englewood
are associated with it. The book is centered around Cliffs, N. J.: Prentice-Hall, 1984. ISBN 0-13-
a description of COCOMO, which provides the 881623-9.
framework for discussing a large number of issues Presents and illustrates a top-down, design-oriented
that are important for both the design process and introduction to Ada, using a specially developed
the design product. graphical design notation (the structure graph).

An essential reference text for both instructor and Presentation is oriented toward concurrent pro-
student. grams.

Recommended reading for the instructor. Good ma-
Booch87 terial for student reading and student class presen-
Booch, G. R. Software Engineering with Ada, 2nd tations.
Ed. Menlo Park, Calif.: Benjamin/Cummings,
1987. ISBN 0-8053-0600-5. Cameron83

Describes the Ada language and its use, with partic- Cameron, J. R. JSP & JSD: The Jackson Approach
ular reference to the features of Ada that support to Software Development. Washington, D. C.:
software engineering principles. Contains five ex- IEEE Computer Society Press, 1983. ISBN 0-8186-
amples on object-oriented design, presented in a 8516-6.
highly readable form. A collection of articles and papers describing JSP

The examples of object-oriented design provide and JSD and illustrating these methods using a
some valuable ideas and source material for the in- range of examples of reasonable size and com-
structor. plexity.

Good source material for the instructor. A potential
B rooks75 source of material for student tutorials.
Brooks, Jr., F. P. The Mythical Man-Month. Read-
ing, Mass.: Addison-Wesley, 1975. ISBN 0-201- Connor85
00650-2. Connor, D. Information System Specification and

This book can be regarded as being a classical pres- Design Road Map. Englewood Cliffs, N. J.:
entation of the problems that may be encountered in Prentice-Hall, 1985. ISBN 0-13-464868-4.
the development and management of a large soft- Essentially aimed at DP-style systems that are con-
ware system. As such, it should be regarded as cemed with record management. Gives an over-
essential preliminary reading for anyone who has view of a number of methods based on a document
little or no prior experience of programming-in- library problem.
the-large, or who has not been involved in project
management. The book contains many important
lessons for the designer, presented in a particularly
readable format.

24 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Cross84 Falrley85. Cross, N., ed. Developments in Design Methodology. Fairley, R. E. Software Engineering Concepts. New
New York: John Wiley, 1984. ISBN 0-471-10248- York: McGraw-Hill, 1985. ISBN 0-07-019902-7.
2. Describes the basic concepts and major issues of

A comprehensive summary of work in the field of software engineering, including current tools and
design theory over the past twenty-five years. In- techniques. Contains a chapter on design that
cludes important papers by J Christopher Jones, covers fundamental design concepts, including as-
Christopher Alexander, Herbert Simon, and Horst sessment criteria, design notations, and design tech-
Rittel. niques.

Good source material for instructor. Recommended
Davis83 reading for students.
Davis, W. S. Systems Analysis and Design. Read-
ing, Mass.: Addison-Wesley, 1983. ISBN 0-201- Fox82
10271-4. Fox, J. M. Software and Its Development. Engle-

A presentation on analysis and design based around wood Cliffs, N. J.: Prentice-Hall, 1982. ISBN 0-13-
the use of three case studies. Each of the case 822098-0.
studies is taken through the steps of problem defini- Discusses the development of large scale software.
tion, feasibility study, analysis, system design, and
detailed design. The main emphasis of the book is
on analysis rather than design, as such. The book is Franta82
oriented toward business applications. The book Franta, W. R., H. K. Berg, W. E. Boebert, and
primarily makes use of the SSA/SD approach to de- T. G. Moher. Formal Methods of Program Verifi-
sign. cation and Specification. Englewood Cliffs, N. J.:
The case studies may provide a useful basis for Prentice-Hall, 1982.
class discussions.

Freeman80
* DeMarco79 Freeman, P., and A. I. Wasserman, eds. Software

DeMarco, T. Structured Analysis and System Speci- Design Techniques, 4th Ed. Silver Spring, Md.:
fication. Englewood Cliffs, N. J.: Yourdon Press, IEEE Computer Society Press, 1980. ISBN 0-8186-
1979. ISBN 0-917072-07-3. 0514-0.

A readable book on structured analysis and system A large collection of papers covering basic con-
specification that covers data flow diagrams, data cepts, analysis and specification, architectural de-
dictionaries, and process specification. sign, data design, detailed design, and management

issues. Includes several of the papers listed in this
Good source material for the instructor. Recom- bibliography section.
mended reading for students. Should provide a useful source of material for the

Downs88 instructor and useful material for student tutorials.

Downs E., P. Clare, and I. Coe. SSADM: Structured
Systems Analysis and Design Method. New York:
Prentice-Hall, 1988. ISBN 0-13-854324-0. Gane, C., and T. Sarson. Structured Systems Anal-

ysis: Tools and Techniques. Englewood Cliffs,
SSADM is a highly prescriptive design method, N. J.: Prentice-Hall, 1979. ISBN 0-13-854547-2.
with a fully defined structure and terminology. This
book begins by describing the structure of the meth- One of the more widely used books on structured
od, and then describes the activities that should be systems analysis. The book discusses some of the
associated with each of the phases, stages, steps, problems in analysis, reviews graphical tools, and
and tasks involved. Written in a clear and readable shows how the graphical tools fit together to make a
style, this book makes good use of diagrams logical model. Each tool is treated in detail, includ-
throughout. ing the data flow diagram. A structured system

development method that takes advantage of the
The level of detail makes this book more suitable tools is presented. The importance of changeability
for use by the instructor than by the student, unless and how it may be treated is also covered.. SSADM is being used as the main topic of a course
uniL Essential instructor reading. Recommendnd student

reading.

SEI-CM-2-2.1 Draft For Public Review 25

Introduction to Software Design

Hansen86 Presents a semiformal approach to program design
Hansen, K. Data Structured Program Design. that maps the syntactic structure of a program's in-
Englewood Cliffs, N.J.: Prentice-Hall, 1986. ISBN put into a structure for an algorithm to process that
0-9605884-2-6. input. This can be considered as the sourcebook forJSP, and despite the use of COBOL for the pro-

The main theme of this book is Orr's Data Struc- gramming examples, it discusses a lot of important
tured Systems Development (DSSD) method, which issues.
is also compared and contrasted with the related For a more general approach to the use of JSP, see
work of Warnner and Michael Jackson (JSP). The [Cameron83]. [Ingovaldsson86] is better suited for
program examples use COBOL, although a knowl- student use.
edge of this language is probably not essential to an
understanding of the material. The book contains
many examples of the use of Warnier/Orr diagrams. Jackson83

Jackson, M. A. System Development. EnglewoodWritten in a very readable style. It may be rather Cliffs, N. J.: Prentice-Hall, 1983. ISBN 0-13-
detailed in its treatment of the subject matter for use 8.
by students, but it contains some useful guidelines 880328-5.
and ideas for the instructor. This book contains the original description of JSD.

It is built around three worked examples. Note that
Hayes87 (Cameron83] and [Sutcliffe88] provide descriptions
Hayes, I, ed. Specification Case Studies. Englewood of a more current form of the JSD method and con-
Cliffs, N. J.: Prentice-Hall, 1987. ISBN 0-13- tain more manageable examples for students.
826579-8. A source of material for the instructor, rather than

A collected set of case studies that are all based for the student.

upon the use of 7, providing a well-structured intro-
duction to the use of formal methods. The section Jensen79
on specification of the UNIX filing system may in- Jensen, IL W., and C. C. Tonies, eds. Software En-
volve sufficiently familiar material to provide a gineering. Englewood Cliffs, N. J.: Prentice-Hall,
good introduction for many students. 1979. ISBN 0-13-822130-8.

Suitable for use by both instructors and students. A collection of articles that are primarily oriented
toward management. However, structured program

IEEE83 design is covered.
IEEE. IEEE Standard Glossary of Software Engi-
neering Terminology. New York: IEEE, 1983. Jones70
ANSUIEEE Std 729-1983. Jones, J. Christopher. Design Methods: Seeds of

Provides definitions for many of the terms used in Human Futures. New York: Wiley Interscience,
software engineering. 1970. ISBN 0-471-44790-0.

This is a quite widely-cited book. It treats design as
lngevaldsson86 a strategy for problem-solving in a fairly wide
Ingevaldsson, L. JSP: A Practical Method of Pro- domain, rather than being centered on the design of
gram Design, 2nd Ed. Bromley, Kent, U. K.: software. It is included here because it is an ex-
Chartwell-Bratt Ltd., 1986. ISBN 0-86238-107-X. ample of a book that emphasizes the inter-

disciplinary nature of design, and so illustrates the
A practical book that relates JSP concepts to a point that the problems we encounter are not unique
wider domain. (The reader is invited to draw struc- to software design. It also highlights cognitive is-
ture diagrams to describe a train, a telephone direct- sues of the design process.
ory, and other structures). This book is in a very A book that offers thoughts and ideas for the in-
readable style, and is well-provided with examples structor, and which might also provide some
and exercises (and with solutions for the latter). thoughts for the student, when used for background

A useful book for anyone teaching any details about reading.
JSP, and well-suited for use by students.

Jones8O
Jackson75 Jones, C. B. Software Development: A Rigorous Ap-
Jackson, M. A. Principles of Program Design. Or- proach. Englewood Cliffs, N. J.: Prentice-Hall,
lando, Fla.: Academic Press, 1975. ISBN 0-12- 1980. ISBN 0-13-821884-6.
379050-6.

26 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Presents a formal approach to specification and ver- format used for the book makes the examples par-
ification of programs and to the use of abstract data ticularly clear and readable.
types. The level of detail provided makes this particularly

The material of this book may be difficult for any- suitable for use as a source of material for the in-
one who lacks the necessary mathematical back- structor.
ground or who is unfamiliar with the type of nota-
tion used. Martin84

Martin J., and C. McClure. Diagramming Tech-
Kernighan76 niques for Analysts and Programmers. Englewood
Kernighan, B. W., and P. Plauger. Software Tools. Cliffs, N. J.: Prentice-Hall, 1984. ISBN 0-13-
Reading, Mass.: Addison-Wesley, 1976. ISBN 0- 208794-4.
20 1-03668-1. A useful summary of some major forms of diagrams

A popular guide to programming style and to the that also provides a set of examples for a wide range
organization and design of software tools. Strongly of diagrammatic forms.
linked to the UNIX philosophy of providing small,
independent tools and linking these together to pro-
duce more powerful tools tailored for specific pur-
poses. Millington81

Provides a readable and interesting source of ideas Millington, D. Systems Analysis and Design for

for the student, taking a somewhat different view of Computer Applications. New York: Halsted Press,
design than that used in most of the texts listed in 1981. ISBN 0-470-27224-4.
this bibliography.

Mi1s86
Linger79 Mills, H. D., R. C. Linger, and A. R. Hevner.
Linger, R. C., H. D. Mills, and B. I. Witt. Structured Principles of Information Systems Analysis and De-
Programming: Theory and Practice. Reading, sign. Orlando, Fla.: Academic Press, 1986. ISBN
Mass.: Addison-Wesley, 1979. ISBN 0-201-14461 - 0-12-497545-3.

@ 1. This book presents a box structure approach to the
Central theme is the design of mathematically cor- design of information systems, based upon the use
rect structured programs by the use of systematic of "black box," "state machine," and "clear box"
methods of program analysis and synthesis. structures. Management issues involved in the de-

sign process are included in the presentation, al-
Instructors may find this book useful for material on though the main emphasis is on the design transfor-
structured programming. Material may be appro- mation techniques involved.
priate for student tutorials.

Liskov86 MIIIs88
Mills, E. E. Software Metrics. Curriculum Module

Liskov B., and J. Guttag. Abstraction and Specifi- SEI-CM-12-1.1, Software Engineering Institute,
cation in Program Design. New York: McGraw- Carnegie Mellon University, Pittsburgh, Pa., Dec.
Hill, 1986. ISBN 0-07-037996-3. 1988.

Discusses different uses of abstractions, based
largely around the programming language CLU, Myers78
and with an emphasis upon the issues of Myers, G. J. Composite Structure Design. New
programming-in-the-large. Primarily concerned York: Van Nostrand, 1978. ISBN 0-442-80584-5.
with relatively detailed design issues.

A data flow approach to program design similar to
Marca88 Yourdon79.

Marca, D. A., and C. L. McGowan. SADT: Struc-
tured Analysis and Design Technique. New York: Page-Jones80
McGraw-Hill, 1988. ISBN 0-07-040235-3. Page-Jones, M. The Practical Guide to Structured

Systems Design. Englewood Cliffs, N. J.: Yourdon
A detailed description of SADT, which makes use Press, 1980. ISBN 0-917072-17-0.. of a generous supply of illustrations and examples,
as well as providing a number of case studies taken Presents the tools of structured analysis and shows
from different application domains. The large size how to use these tools. Defines the activity of de-

SEI-CM-2-2.1 Draft For Public Review 27

Introduction to Software Design

sign and the qualities of a good design with respect ters on stepwise refinement, cohesion and coupling.
to partitioning, coupling, and cohesion. Presents a data flow, and data structure.
discussion on transform and transaction analysis. A good source of material for the instructor, could

A readable book that should be a valuable source of also be used as secondary reading material for stu-
material for both the instructor and student inter- dents.
ested in a comprehensive presentation of structured
systems analysis. Rombach87

Rombach, H. D. Software Specification: A Frame-
Pedersen88 work. Curriculum Module SEI-CM-11-1.0, Soft-
Pedersen, J.S. Software Development Using VDM. ware Engineering Institute, Carnegie Mellon Univer-
Curriculum Module SEI-CM-16-1.0, Software Engi- sity, Pittsburgh, Pa., Oct. 1987.
neering Institute, Carnegie Mellon University, Pitts-
burgh, Pa., April 1988. Sornmerville85

Sommerville, I. Software Engineering, 2nd Ed.
Peters8l Reading, Mass.: Addison-Wesley, 1985. ISBN 0-
Peters, L. J. Software Design: Methods and Tech- 201-14229-5.
niques. Englewood Cliffs, N. J.: Yourdon P General textbook on software engineering, covering
198 1. ISBN 0-917072-19-7. the software life cycle and human aspects of soft-

The first two chapters of this book give a very good ware engineering. Some emphasis on Ada.
description of the software design process, viewed Good reading and source material for instructor.
as a problem-solving process. The issues of design Suitable reading for students, although the ratio of
representation are also discussed in some detail. text to diagrams makes it rather heavy going in
The later chapters on design methods are now a
little dated, in terms of the selection of methods
used. used.Sutcllffe88

This book contains a lot of useful material for the Sutcliffe, A. Jackson System Development. New

instructor, and the student can benefit from using Yor: Prentice-Hall, 1988. ISBN 0-13-508128-9.

the book as secondary support material. Y
A clear introduction to the concepts and use of JSD.

Peterson87a A particularly useful feature is the inclusion of two
Peterson, G. E. ed. Object-Oriented Computing, Vol- worked examples at the back of the book.

ume 1: Concepts. Washington, D. C.: IEEE Com-
puter Society Press, 1987. ISBN 0-8186-0821-8. Warnler80

A useful collection of papers concerned with the Warnier, J. D. Logical Construction of Programs.

development of object-oriented thinking. It also New York: Van Nostrand, 1980. ISBN 0-442-

manages to strike a balance between the view of 22556-3.
Smalltalk-80 and that of languages such as Ada. Presents a semiformal approach to program design

that maps the structure of a program's input into a
Peterson87b structure for an algorithm to process the input.
Peterson, G. E, ed. Object-Oriented Computing, Vol-
ume 2: Implementations. Washington, D. C.: IEEE Wiener84
Computer Society Press, 1987. ISBN 0-8186-0822- Wiener, R. S., and R. F. Sincovec. Software Engi-
6. neering with Modula-2 and Ada. New York: John

Complements the material of Volume I by assem- Wiley, 1984. ISBN 0-471-89014-6.

bling papers concerned with making use of object- Examines each phase of the software engineering
oriented thinking in various forms of systems. process. The focus is on object-oriented design,

with implementation in Modula-2 or Ada. Presents

Pressman82 a review of design methods and principles.
Pressman, R. S. Software Engineering: A Practi- May be useful for use by an instructor or by a stu-
tioner's Approach. New York: McGraw-Hill, 1982. dent interested in object-oriented design and imple-
ISBN 0-07-050781-3. mentations in Modula-2 and Ada.

A survey that covers the software life cycle in a
relatively informal manner. Includes separate chap-

28 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Yourdon79 amples used to iliuswate the points are based upon
Yourdon, E., and L. Constantine. Structured Design: the Ada programming language. They emphasize
Fundamentals of a Discipline of Computer Program the way that this approach designs around the con-

and System Design. Englewood Cliffs, N. J.: cept of modularity.

Prentice-Hall, 1979. ISBN 0-13-854471-9. A useful source of material and examples of object-
oriented methods for the teacher, and one that canPresents a data flow approach to program design usefully be read by any student who wants a better

similar to Myers79]. Much of this material is an usefulleread ny of h a tsach.

expansion of the ideas expressed in [Stevens74]. and fuller understanding of this approach.

Well-written and a good source of material for the
instructor, although perhaps a little dated for use by Adelson85

the student. Adelson, B., and E. Soloway. "Me Role of Domain
Experience in Software Design." IEEE Trans. Soft-

Yourdon85 ware Eng. SE-1I, 11 (Nov. 1985), 1351-1360.
Yourdon, E. Structured Walkthroughs, 3rd Ed. New Abstract: A designer's expertise rests on the knowl-
York: Yourdon Press, 1985. ISBN 0-917072-55-3. edge and skills which develop with experience in a

domain. As a result, when a designer is designingavry remadablnghe o ss th d esgn ad paticr an object in an unfamiliar domain he will not have
way of managing the process of design and assess- the same knowledge and skills available to him as
ing the product. Reviews can be used with all when he is designing an object in a familiar
methods, and this book offers some practical advice domain. In this paper we look at the software
about how to organize them. designer's underlying constellation of knowledge

Students should be encouraged to read this very and skills, and at the way in which this constellation
practical little book to help provide them with a part is dependent upon experience in a domain. What
of the general background to the design process. skills drop out, what skills, or interactions of skills

come forward as experience with the domain
changes? To answer the above question, we studied
expert designers in experimentally created design
contexts with which they were differentiallyPapers familiar. In this paper we describe the knowledge
and skills we found were central to each of the

This section provides an annotated set of references above contexts and discuss the functional utility of
to a select group of published papers covering each. In addition to discussing the knowledge and
various aspects of software design and design meth- skills we observed in expert designers, we will also

ods. The annotations are structured as for textbooks. compare novice and expert behavior.

Abstracts are included whenever available. One of the very few papers to consider the effects of
a designer's prior experience upon the decisions

Abbott83 made in particular circumstances. The paper covers
Abbott, R. J. "Program design by informal English such issues as the building of mental models, theAb ott." C"Progm dsg by, 11(Norepresentation of constraints, and the use of such
descriptions." Conm. ACM 26, 11 (Nov. 1983), techniques as making notes. An important first step
882-894. in an area that is largely uncharted.

Abstract: A technique is presented for developing A good source of discussion material and ideas.
programs from informal but precise English The paper is sufficiently short and well-presented
descriptions. The technique shows how to derive for it to be read by advanced students. While stu-
data types from common nouns, variables from di- dents may find difficulty in relating to all of the
rect references, operators from verbs and attributes, issues, there is much that they should be able to
and control structures from their English equiv- relate to their own experiences.
alents. The primary contribution is the proposed
relationships between common nouns and data
types; the others follow directly. Ada is used as the Beiady76
target programming language because it has useful Belady, L. A., and M. M. Lehman. "A model of
program design constructs. large program development." IBM Systems J. 15, 3

This paper describes the relationship between ob- (1976), 225-252.

jects and data types. It introduces the ideas of Abstract: Discussed are observations made on the
object-oriented design as a means of deriving the development of OS1360 and its subsequent enhance-
structure of a program, based upon the use of an ments and releases. Some modelling approaches to
informal but precise English description. The ex- organizing these observations are also presented.

SEI-CM-2-2.1 Draft For Public Review 29

Introduction to Software Design

This very comprehensive paper can be regarded as paper that can reasonably be read by students who
one of the classic papers in this subject area, in are seeking some insight into this approach to de-
terms of its contribution to our understanding of signing systems.
how the structures of very large systems evolve
with time. While it is not strictly concerned with Cameron86
specific design methods or directly with the design Cameron, J. R. "An Overview of JSD." IEEE Trans.
process, it does provide an important part of the Software Eng. SE-12, 2 (Feb. 1986), 222-240.
background material needed for an understanding of
the problems that face the designer. Abstract: The Jackson System Development (JSD)

A good source of material for the teacher, and al- method addresses most of the software lifecycle.

though it is rather long for the purpose, it can also JSD specifications consist mainly of a distributed
provide a good source of discussion material for network of processes that communicate by message-

student tutorials. passing and by read-only inspection of each other's
data. A JSD specification is therefore directly ex-
ecutable, at least in principle. Specifications areBergland8l developed middle-out from an initial set of "model"

Bergland, G. D. "A Guided Tour of Program Design processes. The model processes define a set of
Methodologies." Computer 14, 10 (Oct. 1981), events, which limit the scope of the system, define
13-37. its semantics, and form the basis for defining data

and outputs. Implementation often involves recon-
A useful survey of design methods with a slant figuring or transforming the network to run on a
toward data processing issues. It provides a com- smaller number of real or virtual processors. The
parative study of a number of different design meth- main phases of JSD are introduced and illustrated
ods, based on an example of a stock control prob- by a small example system. The rationale for the
lem. It makes its points in a clear and readable approach is also discussed.
manner.

A clear summary of a rather complicated and
Good source material for the teacher and a good powerful design method. As the method is still
review article for use by students, too, although the evolving, the steps described are slightly different
restricted domain of the example problem requires from those presented in Michael Jackson's book
that it be supplemented in some way by lectures and System Development.further reading. 'Rather too long and complicated for direct use by

Booch86 students, but a good source of material for the

Booch, G. "Object-Oriented Development." IEEE teacher.

Trans. Software Eng. SE-12, 2 (Feb. 1986), 211-221. Futatsugl85

Abstract: Object-oriented development is a partial- Futatsugi, K., et al. "Principles of OBJ-2." Conf.
lifecycle software development method in which the Record 12th Ann. ACM Symp. on Principles of Pro-
decomposition of a system is based upon the con- gramming Lang. New York: ACM, 1985, 52-66.
cept of an object. This method is fundamentally
different from traditional functional approaches to OBJ-2 is a functional programming language with
design and serves to help manage the complexity of an underlying formal semantics that is based upon
massive software-intensive systems. The paper ex- equational logic and an operational semantics that is
amines the process of object-oriented development based on rewrite rules. The paper deals with issues
as well as the influences upon this approach from of modularization and parameterization, as well as
advances in abstraction mechanisms, programming implementation techniques.
languages, and hardware. The concept of an object
is central to object-oriented development and so Hare188
that properties of an object are discussed in detail.
The paper concludes with an examination of the Harel, D. "On Visual Formalisms." Comm. ACM 31,
mapping of object-oriented techniques to Ada using 5 (May 1988), 514-530.
a design case study. Abstract: The higraph, a general kind of diagram-

A well-presented summary of object-oriented meth- ming object, forms a visual formalism of topologi-
ods, based around the two examples of a car cruise- cal nature. Higraphs are suited for a wide array of
control system and a navigational/weather data col- applications to databases, knowledge representa-
lection buoy. This paper also comments on the rela- tion, and, most notably, the behaviow. I spec~fica-
tionship between this method and the JSD method. tion of complex concurrent systems using thehigraph-based language of statecharts.
A useful source of material for the teacher and a

An elegant and clearly-written paper discussing a

30 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

number of important issues about design represen- form. The discussion is based upon an example of a
tation. The first part of the paper is concerned with problem that may not be very familiar to many
general issues, whereas the latter part provides an readers.
interesting exposition of statecharts. The paper in- The teacher must read this paper; the student might
cludes a detailed example, in the form of a descrip- do better to settle for the teacher's interpretation.
tion of a digital watch.

Henderson86 Parnas79

Henderson, P. "Functional Programming, Formal Parnas, D. L. "Designing Software for Ease of Ex-
Specification, and Rapid Prototyping." IEEE Trans. tension and Contraction." IEEE Trans. Software

Software Eng. SE-12, 2 (Feb. 1986), 241-250. Eng. SE-5, 2 (March 1979), 128-137.

Abstract: Designing software to be extensible andAbstract: Functional programming has enormous easily contracted is discussed as a special case of

potential for reducing the high cost of software de- esign force. A nuber as a exteon
velomen. Bcaue o thesimle athmatcaldesign for change. A number of ways that extensionvelopment. Because of the simple mathematical and contraction problems manifest themselves in

basis of functional programming it is easier to de- cnt ota re
correct programs in a purely functional style software are explained. Four steps in thesign coraitonal impre styl e design of software that is more flexible are then

than in a traditional imperative style. We argue discussed. The most critical step is the design of a
here that functional programs combin te clarity software structure called the "uses" relation. Some
required for the formal specifcation of software e- criteria for design decisions are given and il-
signs with the ability to validate the design by ex- lustrated using a small example. It is shown thatecution. As such they are ideal for rapidly proto- the identification of minimal subsets and minimal

typing a design as it is developed. We give an ex- extensions can lead to software that can be tailored

ample which is larger than those traditionally used tenees oa brad varet f u ers.

to explain functional programming. We use this to the needs of a broad variety of users.

example to illustrate a method of software design An extension to his 1972 paper, in terms of relating
which efficiently and reliably turns an informal de- the basic ideas developed there to the problems en-
scription of requirements into an executable formal countered by a programmer. Largely concerned
specification. with the relationships between modules, particularly

This paper illustrates a rather different approach to with the concept of the "uses" relationship.

design of software systems, based on prototyping A fairly hard paper for the student, but one that can
and using formal specifications. provide a good source of discussion material.

Parnas72 Rentsch82
Parnas, D. L. "On the Criteria to be used in decom- Rentsch, T. "Object Criented Programming." ACM
posing systems into modules." Comm. ACM 15, 12 SIGPLAN Notices 17, 9 (Sept. 1982), 51-57.
(Dec. 1972), 1053-1058. Relates object-oriented design practices to a number

Abstract: This paper discusses modularization as a of existing systems, including Smalltalk. The au-
mechanism for improving the flexibility and com- thor emphasizes the multiple views of object-
prehensibility of a system while allowing the shor- orientation applied to computer systems.
tening of its development time. The effectiveness of Not suitable for direct use by students, due to its
a "modularization" is dependent upon the criteria having too many references to a wide range of ar-
used in dividing the system into modules. A system chitectures and programming languages. The tea-
design problem is presented and both a convention- cher might enjoy it however.
al and unconventional decomposition are described.
It is shown that the unconventional decompositions
have distinct advantages for the goals outlined. The Robson8l
criteria used in arriving at the decompositions are Robson, D. "Object-Oriented Software Systems."
discussed. The unconventional decomposition, if Byte 6, 8 (Aug. 1981), 74-86.
implemented with the conventional assumption that
a module consists of one or more subroutines, will Abstract: This article describes a general class of
be less efficient in most cases. An alternative ap- tools for manipulating information called object-
proach to implementation which does not have this oriented software systems. It defines a series of
effect is sketched. terms, including software system and object-

oriented. The description is greatly influenced by aP A truly "classical" paper, in the sense of being often series of object-oriented programming environ-
cited but probably rarely read. It is a very important ments developed in the last ten years by the Learn-
paper that lays down the basic ideas about infor- ing Research Group of Xerox's Palo Alto Research
mation hiding but in a very concise and compact

SEI-CM-2-2.1 Draft For Public Review 31

Introduction to Software Design

Center, the latest being the Smalltalk-80 system. Wirth7l
The article describes object-oriented software sys- Wirth, N. "Program Development by Stepwise e
tems in general, instead of the Smalltalk-80 system Refinement." Comm. ACM 14, 4 (April 1971),
in particular, in order to focus attention on the fun- 221-227.
damental property that sets the Smalltalk-80 system
apart from most other programming environments. Abstract: The creative activity of programming-to
The words "object-oriented" mean different things be distinguished from coding-is usually taught by
to different people. Although the definition given in examples serving to exhibit certain techniques. It is
this article may exclude systems that should right- here considered as a sequence of design decisions
fully be called object-oriented, it is a useful abstrac- concerning the decomposition of tasks into subtasks
tion of the idea behind many software systems. and of data into data structures. The process of

A brief and clear exposition of the distinctive fea- successive refinement of specifications is illustrated

ture of the object-oriented viewpoint, which is con- by a short but nontrivial example, from which a

trasted with the more "traditional" viewpoint of data number of conclusions are drawn regarding the art

and procedures. Some important concepts that it and the instruction of programming.

briefly introduces include classes and instances, An introduction to the idea of design as a series of
and the concept of inheritance, refinements, based upon the ideas of top-down de-

sign.
Shaw84 The example used in the paper is the classical (and
Shaw, M. "Abstraction Techniques in Modem Pro- rather complex) eight queen's chess problem.
gramming Languages." IEEE Software 1, 4 (Oct. While no longer providing a major source of mate-
1984), 10-26. rial for the teacher, this may be a useful paper to

In this paper, the author looks at programming lan- discuss in tutorials.

guage responses to the dual problems of high soft-
ware cost and low software quality. She argues: Yau86
"The best new developments in programming lan- Yau, S. S., and J. J.-P. Tsai. "A Survey of Software
guages support and exploit abstraction techniques. Design Techniques." IEEE Trans. Software Eng.
These techniques emphasize engineering concerns, SE-12, 6 (June 1986), 713-721.
including design, specification, correctness, and
reliability." Abstract: Software design is the process which

translates the requirements into a detailed design

Stevens74 representation of a software system. Good software
design is a key to produce reliable and understand-

Stevens, W. P., G. J. Myers, and L. L. Constantine. able software. To support software design, many
"Structured Design." IBM Systems J. 13, 2 (May techniques and tools have been developed. In this
1974), 115-139. paper, important techniques for software design, in-

cluding architectural and detailed design stages,
Abstract: Considerations and techniques are pro- are surveyed. Recent advances in distributed soft-
posed that reduce the complexity of programs by ware system design methodologies are also re-
dividing them into functional modules. This can viewed. To ensure software quality, various design
make it possible to create complex systems from verification and validation techniques are also dis-
simple, independent, reusable modules. Debugging cussed. In addition, current software mt'trcs and
and modifying programs, reconfiguring 1/0 devices, error-resistant software design methodologies are
and managing large programming projects can all considered. Future research in software design is
be greatly simplified. And, as the module library also discussed.
grows, increasingly sophisticated programs can be
implemented using less and less new code. This is something of a review paper, and it presents

a suitably long list of references at the end, althoughThis paper can be fairly termed a classic, in that it it still manages to ignore the development of the

introduced the whole notion of structured analysis JSD method entirely.

and structured design, as well as the concepts of

coupling and cohesion, and the use of structure May provide a useful overview for the student, al-
charts to describe the hierarchical form of a pro- though it is rather concise for this purpose. A fairly
gram. comprehensive source of references for student and

teacher.
Most of the material is now available in many of the

books on design, which also include the subsequent
revisions to the basic thinking that was introduced
in this paper. The original paper is now of limited
value to the teacher, and probably of even less value
to the student.

32 Draft For Public Review SEI-CM-2-2.1

*AOORESS (City. Stole and ZIP Cade) 7b. AOORESS (City. State and ZIP Cadet

CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

NAME OF FUNOING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBEPR
ORGANIZATION (Ifappliedbaie

SEI JOINT PROGRAM OFFICE ESDI AVS F1962890CO003
AORESS (City. State ond ZIP Co&eD 10. SOURCE OF FUNOING NOS. ______________

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT No. NO. NO. NO.

*TITLE (Inortude Security Clami(iceaionj 3 5 FNI I /

hnrdcinto Software Design ______ ________________

David Budgen, University of Stirling
TYPE~~~~~ ~ ~ ~ ~ ~ OFRPR ISTM CVR- e.Dw 1. PAGE COUNT

& T Y E O F R E P O T IF R O TM E C O V R E1 4 . O A T E O F R E P O RF T (Y r. . D y

FTNAL FRMI___ T ___ January. 199I32
SUPPLEMENTARY NOTATION

COSATI COOES I& SUBJECT TERMS (ContA'uj on ruerme it necessary @Ad idmntfy by block Plumbenr#

IELO GROUP Sue GR. software design

I design method
ABSTRACT ICOMtRMUCe 00 'WWerW of 01eCeuwIY and iden tify by block nujmberi

This curriculum module provides an introduction to the principles and concepts relevant
to the design of large programs and systems. It examines the role and context of the
design activity as a form of problem-solving process, describes how this is supported
by current design methods, and considers the strategies, strengths, limitations, and
main domains of application of these methods.

ISTRI (UTION/AVAILABI LIT Y OF AB3STRACT 21. ABSTRACT SECURITY CLASSIFICATION

CLASSIPISO/UN4LIMITEO k] SAME AS APT. 0 OTIC USERS C3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
6 NAMIE OP RESPONSIBLE INOIVIOUAL 221a, TELEPHONE NUMBER I22c. OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF (Include Atwo Ciadal ESD/AVS
_______________________________ 1 412 268-7630 (SEI JPQ)

The Software Engineering Institute (SEI) is a federally funded research and development center. operated by Carnegie
Mellon University under contract with the United Slates Department of Defense.

The SEI Software Engineering Curriculum Project is developing a wide fange of materials to support software engineering
* education. A curriculum module (CM) identifies and outlines the content of a specific topic area. and is intended to beused by an instructor in designing a course. A support materials package (SM) contains materials related to a modulethat may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily

related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of t course by the
SEI. by Carnegie Melon University. or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials. and educational materials is
granted. without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Melon University.

Comments on SEI educational materials and requests for additional Information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute. Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (0 Support Materials available) Educational Materials

CM-I (superseded by CM-191 EM-I Software Maintenance Exercises for a Software
CM-2 ntodicoon to Sofware Design En~gineerig Project Course
CM-3 The Softwaire TedwkW aleview Process* EM-2 APSE Iniaractive Monitor: An Arifac for Software
CM-4 Softwae Confgration Management! Enonseri Edmistion

CM5Ilrao Proectio EM-3 Reading Computer Programs: Inshrucoes Guide aid
C.-e So"WwSb Exercises
CM-? Assurance of Software Cualy. CM4 Formal Specilcedon of Softwa'.'
CM-S Unit Testin anW Analysis
CM-b Models of Softwaere Evolution: Lie Cycle and Process
CW- I Softe' Speciliations: A FramnwoI
CM-12 Softwu'e Meet$e
CMA-13 Inrduction ae Software Verillcatin and Varldation
CM-4 Inallead Property Pro tection f1or Softwar
CM-15 Software Development and Licensing Contracts
CM-IS Software Development Using VDM
CM-I? User Interface Development
CM-IS (superseded by CM-231
C140-19 Software Req~frsents
CM-20 Formal Verification of Programse
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Tirne Systems*
CM-23 Technica Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

CM-26 Understanding Program Dependencies

